THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Solution to Problem Set 9

1. Find the Taylor polynomial of degree 3 generated by f(x,y) at the point (0,0) if $f(x,y) = e^{(x+\sin 2y)}$.

Ans:

$$e^{(x+\sin 2y)} = e^x \cdot e^{\sin 2y}$$

$$= \left(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots\right) \left[1+\left((2y)-\frac{(2y)^3}{3!}+\cdots\right)+\frac{((2y)-\cdots)^2}{2!}+\frac{((2y)-\cdots)^3}{3!}+\cdots\right]$$

$$= \left(1+x+\frac{x^2}{2}+\frac{x^3}{6}+\cdots\right) \left(1+2y+2y^2+\cdots\right)$$

$$= 1+x+2y+\frac{x^2}{2}+2xy+2y^2+\frac{x^3}{6}+x^2y+2xy^2+\cdots$$

Therefore, the required Taylor polynomial is $1 + x + 2y + \frac{x^2}{2} + 2xy + 2y^2 + \frac{x^3}{6} + x^2y + 2xy^2$.

2. Find the Taylor polynomial of degree 6 generated by f(x, y) at the point (0, 0) if $f(x, y) = \ln(1 + x \sin y)$. Ans:

$$\begin{aligned} \ln(1+x\sin y) &= (x\sin y) - \frac{(x\sin y)^2}{2} + \frac{(x\sin y)^3}{3} - \cdots \\ &= \left(xy - \frac{xy^3}{3!} + \frac{xy^5}{5!} + \cdots\right) - \frac{\left(xy - \frac{xy^3}{3!} + \frac{xy^5}{5!} + \cdots\right)^2}{2} + \frac{\left(xy - \frac{xy^3}{3!} + \frac{xy^5}{5!} + \cdots\right)^3}{3} - \cdots \\ &= \left(xy - \frac{xy^3}{3!} + \frac{xy^5}{5!} + \cdots\right) - \left(\frac{x^2y^2}{2} - \frac{x^2y^4}{6} + \cdots\right) + \left(\frac{x^3y^3}{3} + \cdots\right) - \cdots \\ &= xy - \frac{xy^3}{6} - \frac{x^2y^2}{2} + \frac{xy^5}{120} + \frac{x^2y^4}{6} + \frac{x^3y^3}{3} + \cdots \end{aligned}$$

Therefore, the required Taylor polynomial is $xy - \frac{xy^3}{6} - \frac{x^2y^2}{2} + \frac{xy^5}{120} + \frac{x^2y^4}{6} + \frac{x^3y^3}{3}$.

3. (Optional) Let $f(x, y) = e^{x+2y}$.

(a) Evaluate
$$\int_0^{1/2} \int_0^{1/2} f(x,y) \, dx \, dy$$
.

(b) i. Find the Taylor polynomial $P_2(x, y)$ of degree 2 generated by f(x, y) at the point (0, 0). ii. Compute $\int_{0}^{1/2} \int_{0}^{1/2} P_2(x, y) dx dy$.

i. Compute
$$\int_0 \int_0 P_2(x, y) dx dy$$
.
Is it a good approximation of the integral in (a)? Why?

Ans:

$$\int_{0}^{1/2} \int_{0}^{1/2} f(x,y) \, dx \, dy = \int_{0}^{1/2} \int_{0}^{1/2} e^{x+2y} \, dx \, dy$$
$$= \int_{0}^{1/2} [e^{x+2y}]_{0}^{1/2} \, dy$$
$$= \int_{0}^{1/2} (\sqrt{e} - 1)e^{2y} \, dy$$
$$= \left[\frac{\sqrt{e} - 1}{2}e^{2y}\right]_{0}^{1/2}$$
$$= \frac{(\sqrt{e} - 1)(e - 1)}{2}$$
$$\approx 0.557343$$

(b) i. We have

$$e^{x+2y} = e^x \cdot e^{2y}$$

= $\left(1 + x + \frac{x^2}{2!} + \cdots\right) \left(1 + 2y + \frac{(2y)^2}{2!} + \cdots\right)$
= $1 + x + 2y + \frac{x^2}{2} + 2xy + 2y^2 + \cdots$

Therefore, $P_2(x, y) = 1 + x + 2y + \frac{x^2}{2} + 2xy + 2y^2$.

$$\begin{split} \int_{0}^{1/2} \int_{0}^{1/2} P_2(x,y) \, dx \, dy &= \int_{0}^{1/2} \int_{0}^{1/2} \left(1 + x + 2y + \frac{x^2}{2} + 2xy + 2y^2 \right) \, dx \, dy \\ &= \int_{0}^{1/2} \left[x + \frac{x^2}{2} + 2xy + \frac{x^3}{6} + x^2y + 2xy^2 \right]_{0}^{1/2} \, dy \\ &= \int_{0}^{1/2} \frac{31}{48} + \frac{5}{4}y + y^2 \, dy \\ &= \left[\frac{31}{48}y + \frac{5}{8}y^2 + \frac{1}{3}y^3 \right]_{0}^{1/2} \\ &= \frac{25}{48} \\ &\approx 0.520833 \end{split}$$

We can see that the above is a good approximation since $P_2(x, y)$ is a good approximation of f(x, y) around the point (0, 0).

- 4. Find the absolute maximum and minimum points of the functions on the given domains.
 - (a) $f(x,y) = 2x^2 4x + y^2 4y + 1$ on the triangle bounded by the lines x = 0, y = 2 and y = 2x in the first quadrant.
 - (b) $f(x,y) = x^2 + xy + y^2 6x + 2$ on the rectangle bounded by the lines x = 0, x = 5, y = -3 and y = 0.
 - (c) f(x,y) = xy on the region $D = \{(x,y) : x \ge 0, y \ge 0 \text{ and } x^2 + y^2 \le 4\}.$

Ans:

(a) Firstly, we have $\nabla f(x, y) = (4x - 4, 2y - 4)$, so $\nabla f(x, y) = (0, 0)$ when (x, y) = (1, 2). Therefore, there is no stationary point in the interior of the triangle and there is a stationary point (1, 2) lying on the boundary. Furthermore, the hessian matrix of f is

$$H(x,y) = \begin{bmatrix} 4 & 0\\ 0 & 2 \end{bmatrix}$$

(a)

and so

$$H(1,2) = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}.$$

Note that det H(1,2) = 8 > 0 and $f_{xx}(1,2) = 4 > 0$, so f attains minimum at (1,2) and we have f(1,2) = -5.

For the boundary:

- Let $\gamma_1(t) = (0,t)$ for $t \in [0,2]$. We have $f(\gamma_1(t)) = t^2 4t + 1$ and so $\frac{d}{dt}f(\gamma_1(t)) = 2t 4$. Note that $\frac{d}{dt}f(\gamma_1(t)) < 0$ when 0 < t < 2. Therefore, f attains minimum along γ_1 when t = 2 and $f(\gamma_1(2)) = f(0,2) = -3$; f attains maximum along γ_1 when t = 0 and $f(\gamma_1(0)) = f(0,0) = 1$.
- Let $\gamma_2(t) = (t, 2)$ for $t \in [0, 1]$. We have $f(\gamma_2(t)) = 2t^2 4t 3$ and so $\frac{d}{dt}f(\gamma_2(t)) = 4t 4$. Note that $\frac{d}{dt}f(\gamma_2(t)) < 0$ when 0 < t < 1. Therefore, f attains minimum along γ_2 when t = 1 and $f(\gamma_2(1)) = f(1, 2) = -5$; f attains maximum along γ_2 when t = 0 and $f(\gamma_2(0)) = f(0, 2) = -3$.
- Let $\gamma_3(t) = (t, 2t)$ for $t \in [0, 1]$. We have $f(\gamma_3(t)) = 6t^2 12t + 1$ and so $\frac{d}{dt}f(\gamma_3(t)) = 12t 12$. Note that $\frac{d}{dt}f(\gamma_3(t)) < 0$ when 0 < t < 1. Therefore, f attains minimum along γ_3 when t = 1 and $f(\gamma_3(1)) = f(1, 2) = -5$; f attains maximum along γ_3 when t = 0 and $f(\gamma_3(0)) = f(0, 0) = 1$.

Therefore, the absolute maximum of f is 1 which is attained at (0,0) and the absolute minimum of f is -5 which is attained at (1,2).

(b) Firstly, we have $\nabla f(x,y) = (2x + y - 6, 2y + x)$, so $\nabla f(x,y) = (0,0)$ when (x,y) = (4,-2). Therefore, (4,-2) is the only stationary point and it lies in the interior of the rectangle.

Furthermore, the hessian matrix of f is

$$H(x,y) = \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix}$$
$$H(4,-2) = \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix}$$

and so

Note that det H(1,2) = 3 > 0 and $f_{xx}(4,-2) = 2 > 0$, so f attains minimum at (4,-2) and we have f(4,-2) = -10.

For the boundary:

- Let $\gamma_1(t) = (0,t)$ for $t \in [-3,0]$. We have $f(\gamma_1(t)) = t^2 + 2$ and so $\frac{d}{dt}f(\gamma_1(t)) = 2t$. Note that $\frac{d}{dt}f(\gamma_1(t)) < 0$ when -3 < t < 0. Therefore, f attains minimum along γ_1 when t = 0 and $f(\gamma_1(0)) = f(0,0) = 2$; f attains maximum along γ_1 when t = -3 and $f(\gamma_1(-3)) = f(0,-3) = 11$.
- Let $\gamma_2(t) = (t,0)$ for $t \in [0,5]$. We have $f(\gamma_2(t)) = t^2 6t + 2$ and so $\frac{d}{dt}f(\gamma_2(t)) = 2t 6$. Note that $\frac{d}{dt}f(\gamma_2(t)) < 0$ when 0 < t < 3 and $\frac{d}{dt}f(\gamma_2(t)) > 0$ when 3 < t < 5. Therefore, f attains minimum along γ_2 when t = 3 and $f(\gamma_2(3)) = f(3,0) = -7$; f attains maximum along γ_2 when t = 0, t = 5, we have $f(\gamma_2(0)) = f(0,0) = 2$ and $f(\gamma_2(5)) = f(5,0) = -3$.
- Let $\gamma_3(t) = (5,t)$ for $t \in [-3,0]$. We have $f(\gamma_3(t)) = t^2 + 5t 3$ and so $\frac{d}{dt}f(\gamma_3(t)) = 2t + 5$. Note that $\frac{d}{dt}f(\gamma_3(t)) < 0$ when -3 < t < -5/2 and $\frac{d}{dt}f(\gamma_3(t)) > 0$ when -5/2 < t < 0. Therefore, f attains minimum along γ_3 when t = -5/2 and $f(\gamma_3(-5/2)) = f(5, -5/2) = -37/4$; f attains maximum along γ_3 when t = 0, t = -3, we have $f(\gamma_3(0)) = f(5, 0) = -3$ and $f(\gamma_3(-3)) = f(5, -3) = -9$.
- Let $\gamma_4(t) = (t, -3)$ for $t \in [0, 5]$. We have $f(\gamma_4(t)) = t^2 9t + 11$ and so $\frac{d}{dt}f(\gamma_4(t)) = 2t 9$. Note that $\frac{d}{dt}f(\gamma_4(t)) < 0$ when 0 < t < 9/2. Therefore, f attains minimum along γ_4 when t = 9/2 and $f(\gamma_3(9/2)) = f(9/2, -3) = -37/4$; f attains maximum along γ_4 when t = 0, t = 5, we have $f(\gamma_4(0)) = f(0, -3) = 11$ and $f(\gamma_4(5)) = f(5, -3) = -9$.

Therefore, the absolute maximum of f is 11 which is attained at (0, -3) and the absolute minimum of f is -10 which is attained at (4, -2).

(c) Firstly, we have $\nabla f(x, y) = (y, x)$, so $\nabla f(x, y) = (0, 0)$ when (x, y) = (0, 0). Therefore, there is no stationary point in the interior of the region D and there is a stationary point (0, 0) lying on the boundary. Furthermore, the hessian matrix of f is

$$H(x,y) = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$
$$H(0,0) = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

and so

Note that det
$$H(0,0) = -1 < 0$$
, so $(0,0)$ is a saddle point of f and we have $f(0,0) = 0$.
For the boundary:

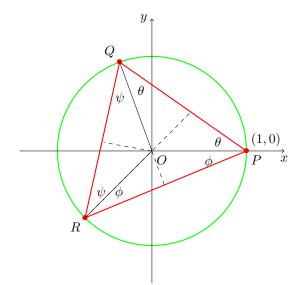
- Let $\gamma_1(t) = (0, t)$ for $t \in [0, 2]$. We have $f(\gamma_1(t)) = 0$ which is a constant function.
- Let $\gamma_2(t) = (t, 0)$ for $t \in [0, 2]$. We have $f(\gamma_2(t)) = 0$ which is a constant function.
- Let $\gamma_3(t) = (2\cos t, 2\sin t)$ for $t \in [0, \pi/2]$. We have $f(\gamma_3(t)) = 4\sin t\cos t = 2\sin 2t$ and so $\frac{d}{dt}f(\gamma_3(t)) = 4\cos 2t$. Note that $\frac{d}{dt}f(\gamma_3(t)) < 0$ when $\pi/4 < t < \pi/2$ and $\frac{d}{dt}f(\gamma_3(t)) > 0$ when $0 < t < \pi/4$. Therefore, f attains minimum along γ_3 when t = 0, $t = \pi/2$, we have $f(\gamma_3(0)) = f(2, 0) = 0$ and $f(\gamma_3(\pi/2)) = f(0, 2) = 0$; f attains maximum along γ_3 when $t = \pi/4$ and $f(\gamma_3(\pi/4)) = f(\sqrt{2}, \sqrt{2}) = 2$.

Therefore, the absolute maximum of f is 2 which is attained at $(\sqrt{2}, \sqrt{2})$ and the absolute minimum of f is 0 which is attained at (t, 0) or (0, t) for any $t \in [0, 2]$.

5. Among all triangles with vertices on a given circle, find those that have the largest area.

Ans:

Intuition tells us that the equilateral triangles must have the largest area. However, proving this can be quite difficult unless a good choice of variables in which to set up the problem analytically is made. With a suitable choice of units and axes we can assume the circle is $x^2 + y^2 = 1$ and that one vertex of the triangle is the point P with coordinates (1,0). Let the other two vertices, Q and R, be as shown in figure below:



Where should Q and R be to ensure that triangle PQR has maximum area?

There is no harm in assuming that Q lies on the upper semicircle and R on the lower, and that the origin O is inside triangle PQR. Let PQ and PR make angles θ and ϕ , respectively, with the negative direction of the x-axis. Clearly $0 \le \theta \le \pi/2$ and $0 \le \phi \le \pi/2$. The lines from O to Q and R make equal angles with the line

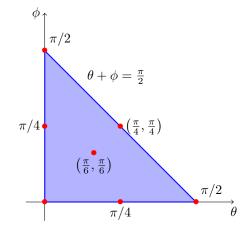
QR, where $2\theta + 2\phi + 2\psi = \pi$. Dropping perpendiculars from O to the three sides of the triangle PQR, we can write the area A of the triangle as the sum of the areas of six small, right-angled triangles:

$$A = 2 \times \frac{1}{2} \sin \theta \cos \theta + 2 \times \frac{1}{2} \sin \theta \cos \theta + 2 \times \frac{1}{2} \sin \psi \cos \psi$$
$$= \frac{1}{2} (\sin 2\theta + \sin 2\phi + \sin 2\psi).$$

Since $2\psi = \pi - 2(\theta + \phi)$, we express A as a function of the two variables θ and ϕ :

$$A = A(\theta, \phi) = \frac{1}{2} \left(\sin 2\theta + \sin 2\phi + \sin 2(\theta + \phi) \right)$$

The domain of A is the triangle $\theta \ge 0$, $\phi \ge 0$, $\theta + \phi \le \pi/2$. A = 0 at the vertices of the triangle and is positive elsewhere. (See the following figure)



The domain of $A(\theta, \phi)$

We show that the maximum value of $A(\theta, \phi)$ on any edge of the triangle is 1 and occurs at the midpoint of that edge. On the edge $\theta = 0$ we have

$$A(0,\phi) = \frac{1}{2} \left(\sin \phi + \sin 2\phi \right) = \sin 2\phi \le 1 = A(0,\pi/4)$$

Similarly, on $\phi = 0$, $A(\theta, \phi) \leq 1 = A(\pi/4, 0)$. On the edge $\theta + \phi = \pi/2$ we have

$$A\left(\theta, \frac{\pi}{2} - \theta\right) = \frac{1}{2}\left(\sin 2\theta + \sin(\pi - 2\theta)\right)$$
$$= \sin 2\theta \le 1 = A\left(\frac{\pi}{4}, \frac{\pi}{4}\right).$$

We must now check for any interior critical points of $A(\theta, \phi)$. (There are no singular points.) For critical points we have

$$\begin{array}{ll} 0 = & \frac{\partial A}{\partial \theta} = \cos 2\theta + \cos(2\theta + 2\phi), \\ 0 = & \frac{\partial A}{\partial \phi} = \cos 2\phi + \cos(2\theta + 2\phi), \end{array}$$

so the critical points satisfy $\cos 2\theta = \cos \phi$ and, hence $\theta = \phi$. We now substitute this equation into either of the above equations to determine θ :

$$\cos 2\theta + \cos 4\theta = 0$$
$$2\cos^2 2\theta + \cos 2\theta - 1 = 0$$
$$(2\cos 2\theta - 1)(\cos 2\theta + 1) = 0$$
$$\cos 2\theta = \frac{1}{2} \text{ or } \cos 2\theta = -1$$

The only solution leading to an interior point of the domain of A is $\theta = \phi = \pi/6$. Note that

$$A\left(\frac{\pi}{6}, \frac{\pi}{6}\right) = \frac{1}{2}\left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right) = \frac{3\sqrt{3}}{4} > 1;$$

this interior critical point maximizes the area of the inscribed triangle. Finally, observe that for $\theta = \phi = \pi/6$, we also have $\psi = \pi/6$, so the largest triangle is indeed equilateral.